Understanding How Birds Fly: Teacher's Notes

Developed by EM Date-Huxtable © Hunter Bird Observers Club 2021

Background: Curriculum Links

This activity embeds learning outcomes of the New South Wales curriculum in a science activity about flight in birds. It addresses the following learning outcomes of the Stage 3 Science and Technology syllabus (and Australian Curriculum learning outcomes in parentheses):

Working Scientifically Skills: ST3-1WS-S

plans and conducts scientific investigations to answer testable questions, and collects and summarises data to communicate conclusions

- pose testable questions (ACSIS231)
- make and justify predictions about scientific investigations (ACSIS232)
- identify questions to investigate scientific ideas
- plan and apply the elements of scientific investigations to answer problems
- identify potential risks in planning investigations
- manage resources safely (ACSIS086, ACSIS103)
- decide which variable(s) is to be changed, measured and kept the same, in fair tests
- select appropriate measurement methods, including formal measurements and digital technologies, to record data accurately and honestly (ACSIS087, ACSIS104)
- reflect on and make suggestions to improve fairness, accuracy and efficacy of a scientific investigation (ACSIS091, ACSIS108)
- construct and use a range of representations, including tables and graphs, to represent and describe observations, patterns or relationships in data
- employ appropriate technologies to represent data (ACSIS090, ACSIS107)
- compare data with predictions
- present data as evidence in developing explanations (ACSIS218, ACSIS221)
- communicate ideas, explanations and processes, using scientific representations including multimodal forms (ACSIS093, ACSIS110)

Knowledge and Understanding: Living World ST3-4LW-S

examines how the environment affects the growth, survival and adaptation of living things 'Adaptations of living things'

Inquiry question: How do the structural and behavioural features of living things support survival? Students:

- describe adaptations as existing structures or behaviours that enable living things to survive in their environment (ACSSU043) SciT 4-
- describe the structural and/or behavioural features of some native Australian animals and plants and why they are considered to be adaptations, for example: ComT SciT .

Knowledge and Understanding: Physical World ST3-9PW-ST investigates the effects of increasing or decreasing the strength of a specific contact or non-contact force

'Transfer and transformation of energy'

Inquiry question: What types of energy transformations can be observed? Students:

- identify different types of energy transformations, for example: (ACSSU097) 🛷
 - mechanical energy to energy of movement

By following the guided 'Flight Experiment' below, the teacher can encourage their students to observe how a toy glider 'flies', using distance measures and flight path descriptions, including when the dimensions of the wings are changed. Year 5 students can be encouraged to use technical terms, such as lift and thrust, air flow and air pressure to explain why the flight of the glider differs between wing shapes. Year 6 students can be encouraged to define questions to test the flight of the glider with different wing shapes and to predict likely outcomes. They can design fair tests of wing shape effect on 'flight performance', identify variables of 'flight performance' and methods to quantify it. They can organise the data collected, tabulating the flight path differences and graphing the flight distances for different wing shapes, interpreting these results to reflect on their predictions, draw conclusions and develop explanations about flight performance differences based on differences in wing length and width. They can be encouraged to think about the changes in weight of the glider with increased wing size that might also affect flight performance.

During the 'flight experiment', students can be encouraged to explain how energy is transformed during flight, from wings flapping to creating lift and thrust and to describe the difference between contact and non-contact forces, such as air flow and air pressure differences on the bird's wing creating lift (contact) and gravity acting on the bird's weight and against lift (non-contact). In the second and third activities, which explore the variety of wing shapes in birds and the flight patterns of these birds, students examine how environmental conditions and structural features of birds affect their adaptations to different environments.

Understanding How a Kite 'Flies'

This section provides the rationalé for studying flight in birds with the example of 'flying' a kite (see presentation) before exploring the 'flight' of a toy glider in an observational experiment.

As air moves (i.e., wind) around an object, such as a kite that's in the air, it creates different pressures on that object. The air moving across the lower surface is slowed down by the kite being tilted towards the air flow, so it moves more slowly than the air moving across the upper surface. Faster air means less pressure on the upper surface of the kite. Slower air means more pressure on the lower surface. This creates a force called 'lift', which makes the kite float upwards. Therefore, the key to flight is creating pressure upwards on the kite to keep it in the air. This is called Bernoulli's Principle after Daniel Bernoulli who published it in his book Hydrodynamica in 1738. The principle is basically similar for a bird's wings.

'Flight' Experiment

During the 'flight' experiment the learning objective is to encourage students to use proportional reasoning in thinking about the relationship between wing shape/design and glider flight performance. Based on how well the gliders perform, ask them to try and describe and compare the performances, and then to try to explain them scientifically:

- Why do you think the glider with longer wings tends to 'nose-dive'? (And the original glider and the one with longer and wider wings don't?)
- What would improve its performance? (eg., greater launch speed, lighter weight, wider wings)
- What happens when you try to launch the glider that has longer and wider wings with more force (=thrust)?

Learning Outcomes:

- To understand how changing the length and width of the glider's wings changes its 'flight performance'
- To explain the forces acting on the glider when it is 'flying'

Instructions: You will use a toy glider as a 'simple' bird. Firstly, observe the shape of the glider's wings and tail.

Materials required:

- 1. Toy foam glider purchased from a toy or department store (~\$3)
- 2. Discarded styrofoam packaging, eg. from a new fridge or washing machine
- 3. Sharp knife for cutting and paring the styrofoam
- 4. Discarded cardboard, eg. cereal and pizza boxes
- 5. Scissors and sticky tape
- 6. Digital (kitchen) scales that measure in tenths of a gram
- 7. 25m measuring tape
- 8. Small fan with several (at least 3) speed settings

Method:

- 1. Assemble the glider (follow the instructions on the box). 'Test fly' the glider and observe how far and high it glides when you launch it with different force or 'thrust'. Now observe what happens when you launch the toy glider after you change the area of its wings.
- 2. Ask a parent or teacher to help you cut and pare the styrofoam to make two wings (**Teacher's Note**: the wings can be made by adults beforehand), each the same width as the originals but twice as long; shape the styrofoam so that the lower surface remains relatively flat and the upper surface is curved like an airfoil (see diagram of airfoil cross-section in presentation).
- 3. Fit the new wings on to the glider and launch it (throw 'javelin-style'), measure with 25m tape how far it glides, repeat 10 times and calculate the average distance that it 'flies'
- 4. Suspend the glider so that the belly just touches the ground (see below), point the fan at its nose and switch it on to the lowest speed, then the next fastest and so on, and record what happens to the glider
- 5. Trace the 2D shape of the Styrofoam wings on to cardboard, cut the cardboard 'wing extensions' out and attach them with sticky tape to the back edge of the Styrofoam (see below), use the scales to decide how to adjust the weight of the wings so that they are approximately equal (within 1g difference) by adding a strip of cardboard to the lighter wing along the back edge of the Styrofoam on the upper surface (Teacher's Note: the wing extensions can be made by adults beforehand)
- 6. Repeat steps 3. & 4.
 - A variation of longer wider wings made of styrofoam only was instructive as it doesn't work – it tends to 'backflip' when launched

• The prototype with longer wider wings, note how the glider is suspended as per 4. above

Students are then asked to record their qualitative and quantitative observations during the experiment with the toy gliders and to address questions about the scientific methods in the context of the 'flight' experiment.

- 7. What difference did you observe in the glider's flight path between the two modifications? (**Teacher's Note**: Ask your students to try explaining the difference using Bernoulli's Principle &/or Changing Forces on the glider).
- 8. Try making some tail modifications and test fly/glide again (repeat steps 3. & 4.)

Wing Shape/Size	Distances 'Flown'	Wing Shape/Size	'Distances Flown'

• Describe differences in flight path and lift you observed between the wing shapes/sizes

Evaluate the Experiment (year 6 only):

- What was the experimental question asked?
- Identify the variables in the experiment.
- After completing the guided experiment, what can you predict about the effect of wing size on flight performance?
- Do you think the experiment was a fair test of the question? Why or why not?

Design and Plan another Investigation, using the wing shapes available and/or other wing designs (year 6 only):

- New Question
- Variables
- Method of Measurement
- Predicted Results

Explaining Flight Using Science/Forces

This section uses scientific explanations (Bernoulli's Principle and Newton's Third Law of Motion) to provide a rationale for flight in gliders and birds (see presentation).

When air flows over an airfoil (wing), the air flows faster over the top of the wing and slower under the wing. The faster flowing air exerts a lower pressure than the slower moving air. The pressure difference causes an upward force called lift, which enables the bird to fly.

Looking at flight from a physics point of view, there are four main forces. **Weight** is a force produced by gravity in the downward direction, and every flyer has to produce **lift** in order to counteract weight. Anything moving through air also experiences **drag**, which slows it down, so there must be a forward-moving force, called **thrust**, to oppose the force of drag. These two pairs of forces weight and lift, drag and thrust have to be roughly balanced in order for a bird to fly (Tong & Schwab 2021).

Bird Wing Shapes

During this activity, encourage students to describe accurately what they observe during the video footage about different types of birds that have differing body and wing proportions and that show different flight behaviours.

Learning Outcome: To accurately observe and describe wing shape and flight behaviour of some birds

- Watch David Attenborough's 'The Life of Birds', Episode 2 'The Mastery of Flight'
- Observe the different types of birds and their wing shapes. Try to describe each bird's body size and shape, such as long and thin, short and round, large and torpedo-shaped, jetfighter-shaped, etc. Try to describe the wing shape. Also note the way the feathers are shaped at the outer ends of the wings. For example, an albatross has very long

wings that are relatively narrow, many flight feathers that are also short relative to wing length, and the wing feathers are pointed at the outer end: therefore, their wings are 'very long, narrow and pointed'

- Try to describe the main flying behaviour(s), such as soaring, flapping, diving with wings partly folded, undulating or alternately flapping and gliding, high-speed flying, hovering, etc. How do birds use their body, wings and tail to adjust their flying speed and direction?
- Observe the 'flight environment' for each different bird. Is it windy? Hot or cold weather? Are there lots of obstacles in the way like trees? Do the birds appear to use updrafts and thermals?
- Tabulate your observations

Activity (Table 1 is completed for reference in Appendix)

Species	Body size and shape	Wing shape	Outer wing feather arrangement	Observed flight environment	Observed flight pattern
Albatross	Large, torpedo- shaped	Long and narrow	Pointed	Very windy	Mostly soaring

Classifying Wing Shape and Predicting Flight Pattern

This section explains a bird's wing structure and its ability to bear its own body weight on its wings during sustained flight (see presentation). The aim is to encourage students to start thinking quantitatively about the effect of a bird's wing and body proportions on flight performance, and the implications of Bernoulli's Principle for birds.

It is adapted from David Hyrenbach's 'Wing Ecomorphology Lab', Seabird Ecology and Conservation course, Hawai'i Pacific University, accessed 7th August 2021, downloaded from https://www.pelagicos.net/classes_seabirds_fa18.htm

Learning Outcome: To classify wing shape descriptively and numerically

Activity: Classify Wing Shapes and Predict Flight Patterns

In this activity students are asked to record and interpret their qualitative observations during the collection of primary data during the video 'The Mastery of Flight' and their quantitative observations during the analysis of secondary data sourced from Higgins *et al.* (1990-2006) Handbook of Australian, New Zealand and Antarctic Birds.

Instructions:

- Watch the presentation about wing shape classification and measurement
- Add a column called 'Wing Shape Type' to Table 1 from the previous activity and classify the wing shape of each species according to the four wing shapes described in this activity
- Plot Wingspan (y-axis) against Wing Chord (x-axis) for the Australian bird species in Table 2 below (and worksheet) and label the points by their Avian Order (use codes below the table)
- Classify each species according to Wing Shape type and add to Table 2 (Hint: use reference images to assist in classifying)
- Interpret from the graphs the range of values of Wingspan and Wing Chord that characterise each wing shape type:
 - o High Aspect Ratio
 - High Speed
 - Slotted High Lift
 - o Elliptical
 - Do any species not fit into the four categories? How would you describe their wing shape?
- Predict the flight pattern of each species; to inform your answer, use the position of each species relative to other species on the graph:

- o High Aspect Ratio
- High Speed
- Slotted High Lift
- o Elliptical
- Do any species not fit into the four categories? How would you describe their flight pattern?

References

Carr, S.M. (2002) Wing Types in Birds, accessed from https://www.mun.ca/biology/scarr/Bird_Wing_Types.htm

Direct Science: Biology. How do Birds Fly?

http://www.dynamicscience.com.au/tester/solutions1/biology/beastonlnad/birdsinflight.html

Higgins, P. *et al.*, eds. (1990-2006). *Handbook of Australian, New Zealand and Antarctic Birds.* Vol. 1-7. Birds Australia, Melbourne.

Hyrenbach, D. 'Wing Ecomorphology Lab', Seabird Ecology and Conservation course, Hawai'i Pacific University, accessed from https://www.pelagicos.net/classes_seabirds_fa18.htm

Lovett, I.J. and Fitzpatrick, J W. (2016). The Flight of Birds: videos. *Handbook of Bird Biology. 3rd Edn.* Cornell Univ/John Wiley & Sons, Ltd, accessed from <u>https://academy.allaboutbirds.org/textbook/handbook-chapters/#chapter-5</u>

Merck, J. (2017) *The Biomechanics of Flight*, GEOL 431 Vertebrate Paleobiology, The University of Maryland, accessed from https://www.geol.umd.edu/~jmerck/geol431/lectures/d12wflight.html

Norberg, U.M.L. (2002). Structure, form, and function of flight in engineering and the living world. *Journal of Morphology*, 252: 52-81

New South Wales Education Standards Authority (2017). NSW Syllabus for the Australian Curriculum: Science and Technology K-6 Syllabus, accessed from <u>https://www.educationstandards.nsw.edu.au/wps/portal/nesa/k-10/learning-areas/science/science-and-technology-k-6-new-syllabus</u>

Pennycuick, C.J. (2008). Modelling the flying bird. Elsevier, Amsterdam, The Netherlands. (including Computer Software For Energetic Costs of Flight)

Rayner J.M.V. (1988) Form and Function in Avian Flight. Pp. 1-66 in Johnston R.F. (eds), *Current Ornithology, vol 5.* Springer, Boston, MA, <u>https://doi.org/10.1007/978-1-4615-6787-5_1</u>

Savile, D. B. O. (1957). Adaptive evolution in the avian wing. *Evolution*, 11: 212-224.

Tennekes, H. (2009). The Simple Science of Flight. MIT Press, Cambridge, MA.

Tong, J. & Schwab, A. 'The Flight of Birds' presentation. Massachusetts Institute of Technology Open Courseware, accessed from <u>https://studylib.net/doc/13562570/the-flight-of-birds-joanna-tong-andamp%3B-adele-schwab</u>

APPENDIX: Teacher's Notes: Table 1 has been completed for reference

Species	Body size	Wing shape	Outer	Observed	Observed	Wing Shape
	and snape	description	wing feather	environment	flight pattern	Туре
			arrange-			
			ment			
Albatross	Large, torpedo- shaped	Very long and narrow	Pointed	Very windy, launch by taxiing/ running, updrafts from waves/cliffs	Mostly soaring, some shallow flapping, controlled crash to land	High Aspect Ratio
Wedge-tailed Shearwater	Large, torpedo- shaped	Long and narrow	Pointed	Windy, launch from sloping tree	Mostly soaring, some shallow flanning	High Aspect Ratio
Domestic Pigeon	Medium and barrel- shaped	Medium length and width	Slightly slotted	Calm, launch by jumping and two very strong flaps	Fast flapping, some gliding	High Speed
Knot	Small to medium, bullet- shaped	Medium length and narrow	Pointed	Clam to windy	Fast shallow flapping, half folded upstroke	High Speed
Mallard (Duck)	Large, heavy and boat- shaped	Medium length and wide	Slightly slotted	Calm to windy	Fast shallow flapping ~70kph (40mph)	High Speed
Osprey	Long and medium build	Long and wide	Slotted	Calm	Slow strong flaps, carries fish straight	Slotted High Lift
Pelican	Very large and round	Very long and wide	Slotted	Calm to windy, uses thermals	Slow strong flaps, flying in formation, strong flaps to land	Slotted High Lift
Griffin Vulture	Long and medium build	Very long and wide, highly curved	Slotted	Use of thermals, spiralling updrafts	Soaring, tiny movements of wing feathers and tail, lands by swooping upwards and tilting back	Slotted High Lift
Mute Swan	Very large, heavy and round	Long and wide	Slotted	Landing only on water, calm	Strong flaps to land and feet out to brake	Slotted High Lift
Peregrine Falcon	Medium length and thin	Medium length, narrow and back swept	Pointed	Calm or some wind	Strong flaps after 'stooping' with half folded back swept wings for	High Speed

					maximum speed	
					when hunting	
Barn Owl	Medium	Long, wide,	Rounded,	Calm	Strong, slow	Rounded High Lift
	length and	curved	fluffy		flaps and gliding	(silent)
	medium		margins		when hunting	
	build					
Kestrel	Small and	Medium	Pointed	Gentle wind	Hovering,	High Speed
	thin	length and			sometimes	
		narrow			shallow flapping	
					when hunting	
Hummingbird	Very small	Short and	Pointed	Mostly calm	Vertical posture,	High Speed
	and thin,	narrow,			beating	
	hibernates	symmetrical			forwards and	
	every night	(not curved),			backwards in	
		create down			figure of 8	
		draft, flap in			25+/sec, flicking	
		any direction,			wing over on	
		steer with tail			back stroke,	
					moves in any	
)A/a at a wa	Creational	N A a aliu yaa	Deinted	Minda fram	direction	Lligh Crossed
vvestern	Small and	Iviedium	Pointed	winds from	Fly in formation	High Speed
(migrating)	bullet-	length and		north	during	
(migrating)	shaped	narrow	Clatted	Thermole ever	migration	
Hawks (migrating)	Iviedium	Iviedium	Slotted	Inermals over	Soaring to great	Slotted High Lift
(ingrating)	huild	width		lanu	diding	
	bullu	width			giung	
					repeatedly	
Snow Goose	Long and	Long and	Slotted	Δηγ	Strong shallow	Slotted High Lift
(migrating)	very round	wide	Slotted		flanning flying	Slotted High Lift
(ingracing)	veryround	WIGE			in formation	
Dicksissel	Small and	Short and	Rounded	Δηγ	Strong	Fllintical
(migrating)	thin	wide	Rounded		continuous	Emptical
(1118) 44118/		Wide			flanning flying	
					in enormous	
					flocks	

Teacher's Notes: Table 2 has been completed for reference

Species	Code	Wingspan (S)	Wing Chord (C)	Wing Shape Type
		cm	cm	
Australasian Grebe	W	39	7.67	Moderate Aspect
				Ratio/Speed
Wandering Albatross	0	350	23.66	High Aspect Ratio
Little Pied Cormorant	W	90	14.99	Moderate Aspect
				Ratio/Speed
Great Frigatebird	0	230	21.72	High Aspect Ratio
Straw-necked Ibis	W	120	14.50	Moderate Aspect Ratio/Lift
Magpie Goose	LW	180	29.95	Moderate Aspect Ratio/Lift
Wandering Whistling-Duck	W	90	15.96	High Speed
Musk Duck	W	87	14.41	High Speed
Black Swan	LW	200	30.30	Moderate Aspect Ratio/Lift
Australian Shelduck	W	132	19.57	High Speed
Maned/Wood Duck	W	80	15.48	High Speed
Pacific Black Duck	W	100	15.32	High Speed
Hardhead	W	70	12.89	High Speed
Wedge-tailed Eagle	R	230	41.41	Slotted High Lift
Peregrine Falcon	AF	105	15.42	High Speed
Australian Brush-Turkey	G	85	26.39	Elliptical
Painted Button-Quail	G	38	7.33	High Speed
Purple Swamphen	W	88	20.53	High Speed
Eurasian Coot	W	64	11.65	High Speed
Pacific Golden Plover	S	72	7.32	High Speed
Bar-tailed Godwit	S	75	10.56	High Speed
Little Tern	S	55	7.95	High Speed
Wompoo Fruit-Dove	PD	70	17.12	Elliptical
White-headed Pigeon	PD	70	17.28	Elliptical
Diamond Dove	PD	32	7.09	Elliptical
Sulphur-crested Cockatoo	Р	103	28.99	Elliptical
Rainbow Lorikeet	Р	46	8.45	High Speed
Budgerigar	Р	30	5.02	High Speed
Fan-tailed Cuckoo	С	42	8.58	Elliptical
Channel-billed Cuckoo	С	107	20.20	Elliptical
Powerful Owl	R	140	29.69	High Lift/ Elliptical
Barn Owl	R	100	17.35	High Lift/ Elliptical
Tawny Frogmouth	Ν	95	20.96	Elliptical
Australian Owlet-Nightjar	Ν	50	9.35	Elliptical
White-throated Needletail	AF	49	6.03	High Speed
Sacred Kingfisher	KR	37	7.24	Elliptical
Dollarbird	KR	65	12.61	Elliptical
Superb Lyrebird	E	76	29.90	Elliptical
Southern Emu-wren	E	19	4.78	Elliptical
Yellow-faced Honeyeater	E	26	7.49	Elliptical
Brown Thornbill	E	16	4.87	Elliptical
Grey-crowned Babbler	E	35	10.86	Elliptical
Golden Whistler	E	30	8.22	Elliptical

Grey Fantail	E	22.5	6.61	Elliptical
Australian Magpie	E	85	18.69	Elliptical
Zebra Finch	E	17	4.65	Elliptical
Welcome Swallow	AF	31	5.79	High Speed

W=waterbird, LW=large waterbird, O=ocean-going, R=raptor, AF=aerial forager, G=ground, S=shorebird, PD=pigeon/dove, P=parrot, C=cuckoo, N=nightjar, KR=kingfisher/roller, E=perching bird

Teacher's Notes: Graph of Wingspan vs Wing Chord for reference (can be enlarged).

